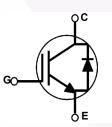


FGA180N33ATD 330 V PDP Trench IGBT

Features

- · High Current Capability
- Low Saturation Voltage: $V_{CE(sat)}$ = 1.68 V @ I_C = 180 A
- High Input Impedance
- RoHS Complaint


Applications

PDP TV

General Description

Using novel trench IGBT Technology, Fairchild's new series of trench IGBTs offer the optimum performance for PDP TV applications where low conduction and switching losses are essential.

Absolute Maximum Ratings

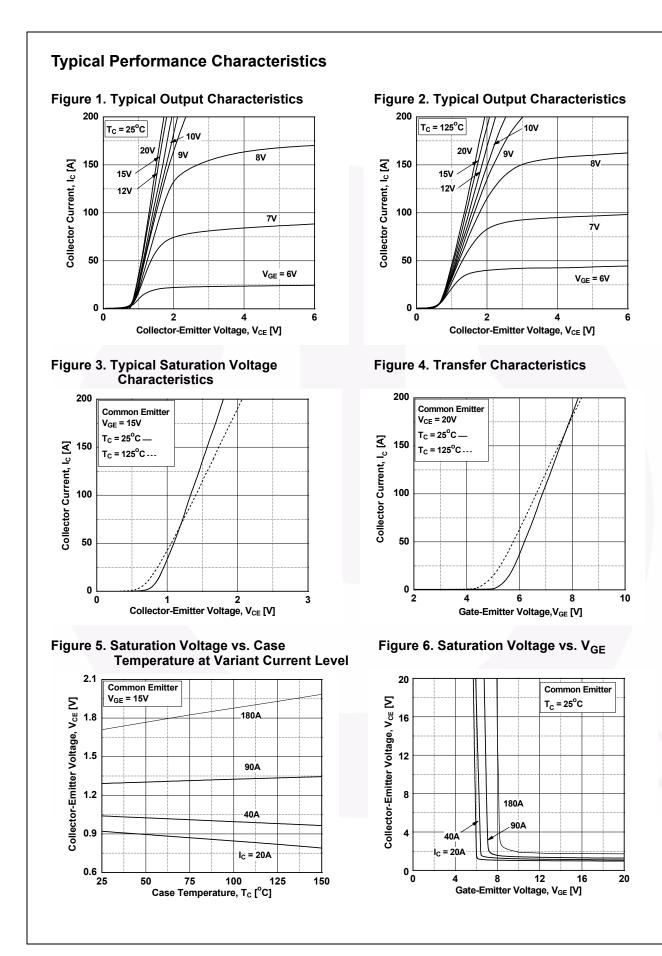
Symbol	Description		Ratings	Unit	
V _{CES}	Collector to Emitter Voltage		330	V	
V _{GES}	Gate to Emitter Voltage		± 30	V	
I _C	Collector Current	@ T _C = 25°C	180	A	
I _{CM (1)}	Pulsed Collector Current	@ T _C = 25 ^o C	450	A	
P _D	Maximum Power Dissipation	@ T _C = 25°C	390	W	
· D	Maximum Power Dissipation	@ T _C = 100°C	156	W	
TJ	Operating Junction Temperature		-55 to +150	°C	
T _{stg}	Storage Temperature Range		-55 to +150	°C	
TL	Maximum Lead Temp. for soldering Purposes, 1/8" from case for 5 seconds		300	°C	

Notes: 1: Repetitive test, pulse width = 100usec, Duty = 0.1

* I_C pulse limited by max Tj

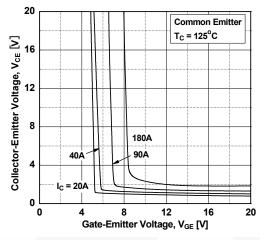
Thermal Characteristics

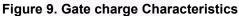
Symbol	Parameter	Тур.	Max.	Unit
$R_{\theta JC}(IGBT)$	Thermal Resistance, Junction to Case	-	0.32	°C/W
$R_{\theta JC}$ (Diode)) Thermal Resistance, Junction to Case - (0.82	°C/W
R_{\thetaJA}	Thermal Resistance, Junction to Ambient	-	40	°C/W

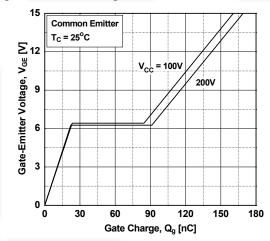

October 2013

		Package	ackage Reel Size		Tape Width		Quantity	
		TO-3P	-	-		30ea		
Electric	al Cha	racteristics of th	e IGBT _{™c} =	25°C unless otherwise noted				
Symbol			Tes	Test Conditions		Тур.	Max.	Uni
Off Charac	teristics							
BV _{CES}	Collector	to Emitter Breakdown Volt	age V _{GE} = 0V,	I _C = 400μA	330	-	-	V
I _{CES}	Collector	Cut-Off Current		s, V _{GE} = 0V	_	-	400	μA
I _{GES}	G-E Leak	age Current		_S , V _{CE} = 0V	-	-	±400	nA
On Charac	toristics						1	
V _{GE(th)}	1	shold Voltage	I _C = 250uA	, V _{CE} = V _{GE}	2.5	4.0	5.5	V
	1.		I _C = 40A, V	′ _{GE} = 15V	-	1.1	1.4	V
	Collector	Collector to Emitter Saturation Voltage		I _C = 180A, V _{GE} = 15V,		1.68	-	V
V _{CE(sat)}	Concetor to Enniter Saturation Voltage		I _C = 180A,	$I_{\rm C}$ = 180A, $V_{\rm GE}$ = 15V $T_{\rm C}$ = 125°C		1.89	-	V
Dynamic C	haracteris	stics					1	
C _{ies}	Input Cap				-	3880	-	pF
C _{oes}	Output C	apacitance		V _{CE} = 30V, V _{GE} = 0V, f = 1MHz		305	-	pF
C _{res}	Reverse	verse Transfer Capacitance				180	-	pF
Switching	Character	istics						
t _{d(on)}		Delay Time			_	27	-	ns
t _r	Rise Time			V, I _C = 40A,	-	80	-	ns
t _{d(off)}	Turn-Off	Delay Time		$R_G = 5\Omega$, $V_{GE} = 15V$, Resistive Load, $T_C = 25^{\circ}C$		108	-	ns
t _f	Fall Time				-	180	240	ns
t _{d(on)}	Turn-On	Delay Time			-	26	-	ns
t _r	Rise Time	e		V, I _C = 40A,	-	75	-	ns
t _{d(off)}	Turn-Off	Delay Time		$R_G = 5\Omega$, $V_{GE} = 15V$, Resistive Load, $T_C = 125^{\circ}C$		112	-	ns
t _f	Fall Time				-	250	300	ns
Qg	Total Gate	e Charge			-	169	-	nC
Q _{ge}	Gate to E	mitter Charge	$V_{CE} = 200'$	V, I _C = 40A,	-	22	-	nC
Q _{gc}	Gate to C	Collector Charge	v _{GE} = 15V	V _{GE} = 15V		69	-	nC

2


FGA18	
DN33ATD	
- 330	
V PDP T	
French I	
IGBT	


Symbol	Parameter	Test Conditions		Min.	Тур.	Мах	Unit
V _{FM}	Diode Forward Voltage	I _F = 20A	T _C = 25°C	-	1.2	1.6	V
* FIM			T _C = 125 ^o C	-	1.04	-	
t _{rr}	Diode Reverse Recovery Time	I _F =20A, di _F /dt = 200A/μs	T _C = 25°C	-	27	-	ns
* I			T _C = 125°C	-	39	-	
l _{rr}	Diode Peak Reverse Recovery Cyrrent		T _C = 25°C	-	3.5	-	А
.11			T _C = 125 ^o C	-	6.0	-	
Q _{rr}	Diode Reverse Recovery Charge		T _C = 25°C	-	48	-	nC
σ.Π.			T _C = 125 ^o C	-	117	-	



Typical Performance Characteristics

Figure 7. Saturation Voltage vs. V_{GE}

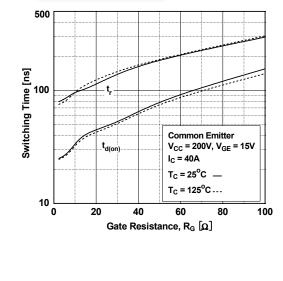


Figure 8. Capacitance Characteristics

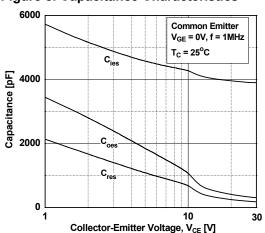


Figure 10. SOA Characteristics

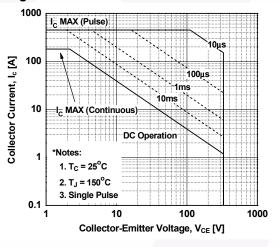
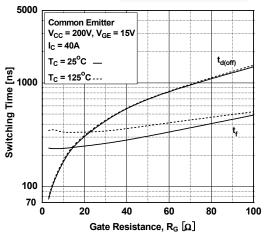
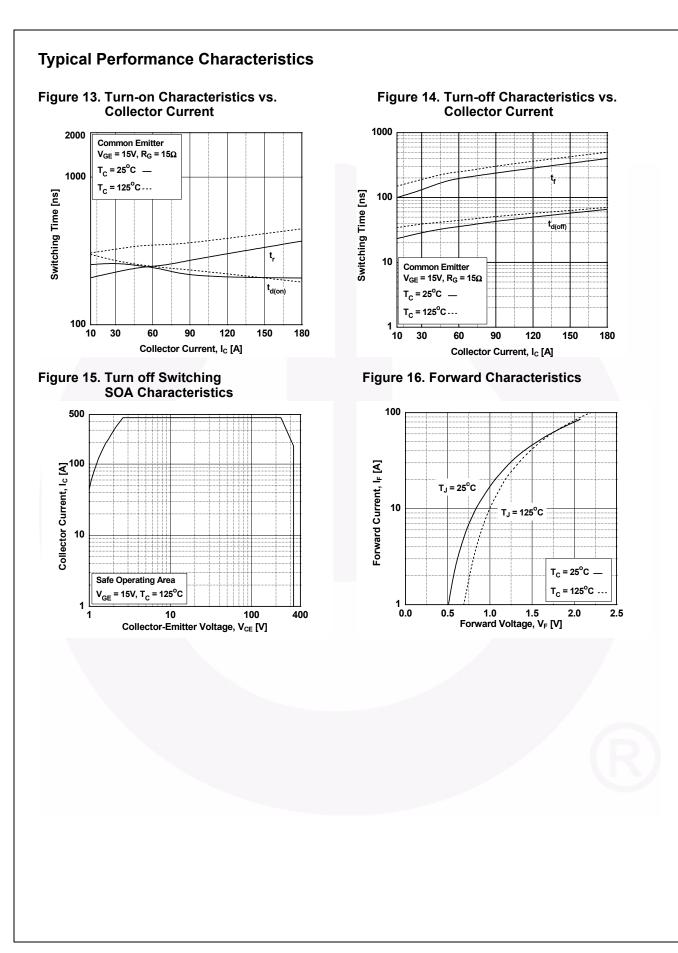




Figure 12. Turn-off Characteristics vs. Gate Resistance

FGA180N33ATD — 330 V PDP Trench IGBT

6

Typical Performance Characteristics

200A/µs

di_r/dt = 100A/µs

20

Forward Current, I_F [A]

25

 $T_c = 25^{\circ}C$

30

35

40

60

Stored Recovery Charge, Q_{rr} [nC] 0 00 00 05 05 05

10

5

10

15

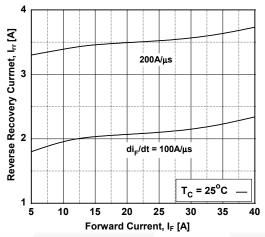
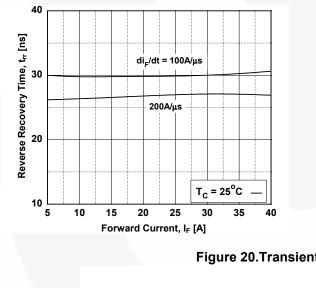
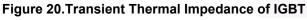
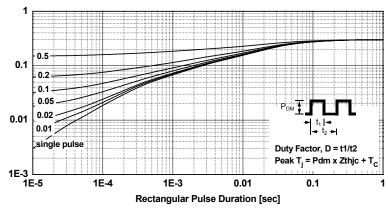
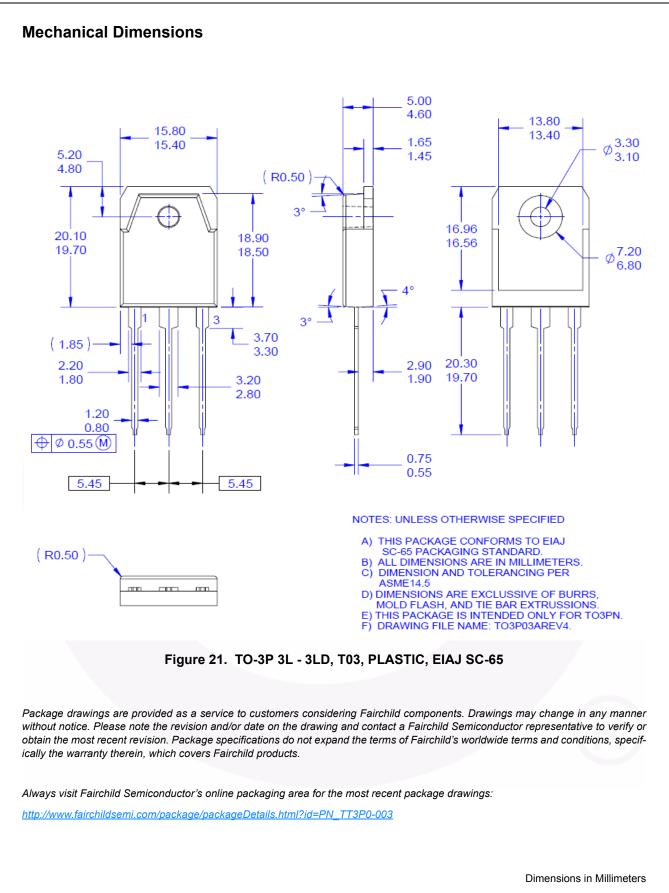





Figure 19. Reverse Recovery Time



©2011 Fairchild Semiconductor Corporation

Thermal Response [Zthjc]

8

TRADEMARKS

The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks.

AccuPower™ AX-CAP® BitSiC™ Build it Now™ CorePLUS™ CorePOWER™ CROSSVOLT™ CTL™ Current Transfer Logic™ **DEUXPEED**® Dual Cool™ EcoSPARK[®] EfficentMax™ ESBC™

Gmax™ GTO™ IntelliMAX[™] **ISOPLANAR™** Marking Small Speakers Sound Louder and Better™ MegaBuck™ MICROCOUPLER™ MicroFET™ MicroPak™ MicroPak2™ MillerDrive™ Fairchild Semiconductor® MotionMax™ FACT Quiet Series™ mWSaver® OptoHiT™ **OPTOLOGIC**® **OPTOPLANAR[®]**

F-PFS™

FRFET®

GreenBridge™ Green FPS™

Global Power ResourceSM

Green FPS™ e-Series™

()® PowerTrench® PowerXS™ Programmable Active Droop™ QFET[®] QS™ Quiet Series™ RapidConfigure[™] тм Saving our world, 1mW/W/kW at a time™ SignalWise™ SmartMax™ SMART START™ Solutions for Your Success™ SPM[®] STEALTH™ SuperFET[®] SuperSOT™-3 SuperSOT™-6 SuperSOT™-8

SupreMOS[®]

SyncFET™

Sync-Lock™ GENERAL ® TinyBoost TinyBuck[®] TinyCalc™ TinyLogic® TINYOPTO™ TinyPower™ TinyPWM™ TinyWire™ TranSiC™ TriFault Detect™ TRUECURRENT®* µSerDes™

UHC® Ultra FRFET™ UniFET™ VCX™ VisualMax™ VoltagePlus™ XS™

*Trademarks of System General Corporation, used under license by Fairchild Semiconductor.

DISCLAIMER

F

Fairchild®

FACT®

FAST®

FPS™

FastvCore™

FETBench™

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used here in:

- Life support devices or systems are devices or systems which, (a) are 1 intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- 2 A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness

ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.Fairchildsemi.com, under Sales Support.

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufactures of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed application, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handing and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address and warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

PRODUCT STATUS DEFINITIONS Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative / In Design	Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
No Identification Needed	Full Production	Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.
Obsolete	Not In Production	Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.
		Bey 16

www.fairchildsemi.com

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Fairchild Semiconductor: FGA180N33ATDTU