Sensitive Gate Silicon Controlled Rectifiers Reverse Blocking Thyristors

Annular PNPN devices designed for high volume consumer applications such as relay and lamp drivers, small motor controls, gate drivers for larger thyristors, and sensing and detection circuits. Supplied in an inexpensive plastic TO-92/TO-226AA package which is readily adaptable for use in automatic insertion equipment.

Features

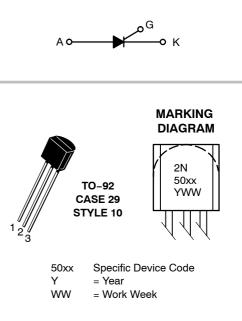
- Sensitive Gate Trigger Current 200 µA Maximum
- Low Reverse and Forward Blocking Current 50 μA Maximum, T_{C} = 110°C
- Low Holding Current 5 mA Maximum
- Passivated Surface for Reliability and Uniformity
- These are Pb–Free Devices

MAXIMUM RATINGS (T_J = 25°C unless otherwise noted)

Rating	Symbol	Value	Unit
Peak Repetitive Off-State Voltage (Note 1) $(T_J = -40 \text{ to } 110^\circ\text{C}, \text{Sine Wave}, \text{S0 to } 60 \text{ Hz}, \text{R}_{\text{GK}} = 1 \text{ k}\Omega)$ 2N5060 2N5061 2N5062 2N5064 2N5064	V _{DRM,} V _{RRM}	30 60 100 200	V
On-State Current RMS (180° Conduction Angles; $T_C = 80$ °C)	I _{T(RMS)}	0.8	A
*Average On-State Current (180° Conduction Angles) $(T_C = 67^{\circ}C)$ $(T_C = 102^{\circ}C)$	I _{T(AV)}	0.51 0.255	A
*Peak Non-repetitive Surge Current, $T_A = 25^{\circ}C$ (1/2 cycle, Sine Wave, 60 Hz)	I _{TSM}	10	A
Circuit Fusing Considerations (t = 8.3 ms)	l ² t	0.4	A ² s
*Average On-State Current (180° Conduction Angles) $(T_{C} = 67^{\circ}C)$ $(T_{C} = 102^{\circ}C)$	I _{T(AV)}	0.51 0.255	A
*Forward Peak Gate Power (Pulse Width \leq 1.0 µsec; T _A = 25°C)	P _{GM}	0.1	W
*Forward Average Gate Power $(T_A = 25^{\circ}C, t = 8.3 \text{ ms})$	P _{G(AV)}	0.01	W
*Forward Peak Gate Current (Pulse Width \leq 1.0 µsec; T _A = 25°C)	I _{GM}	1.0	A
*Reverse Peak Gate Voltage (Pulse Width \leq 1.0 µsec; T _A = 25°C)	V _{RGM}	5.0	V
*Operating Junction Temperature Range	TJ	-40 to +110	°C
*Storage Temperature Range	T _{stg}	-40 to +150	°C

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

 V_{DRM} and V_{RRM} for all types can be applied on a continuous basis. Ratings apply for zero or negative gate voltage; however, positive gate voltage shall not be applied concurrent with negative potential on the anode. Blocking voltages shall not be tested with a constant current source such that the voltage ratings of the devices are exceeded.


*Indicates JEDEC Registered Data.

ON Semiconductor®

http://onsemi.com

SILICON CONTROLLED RECTIFIERS 0.8 A RMS, 30 – 200 V

PIN ASSIGNMENT				
1	Cathode			
2	Gate			
3	Anode			
2 3				

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 6 of this data sheet.

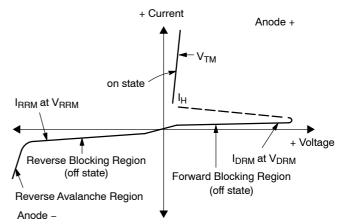
THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
*Thermal Resistance, Junction-to-Case (Note 2)	$R_{ hetaJC}$	75	°C/W
Thermal Resistance, Junction-to-Ambient	$R_{ hetaJA}$	200	°C/W

2. This measurement is made with the case mounted "flat side down" on a heatsink and held in position by means of a metal clamp over the curved surface.

*Indicates JEDEC Registered Data.

ELECTRICAL CHARACTERISTICS (T_C = 25° C unless otherwise noted)


Characteristic	Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS					
*Peak Repetitive Forward or Reverse Blocking Current (Note 3) (V _{AK} = Rated V _{DRM} or V _{RRM}) $T_C = 25^{\circ}C$ $T_C = 110^{\circ}C$	I _{DRM} , I _{RRM}			10 50	μΑ μΑ
ON CHARACTERISTICS	•				•
*Peak Forward On–State Voltage (Note 4) (I _{TM} = 1.2 A peak @ T _A = 25°C)	V _{TM}	-	-	1.7	V
$ \begin{array}{l} \mbox{Gate Trigger Current (Continuous DC) (Note 5)} \\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	I _{GT}			200 350	μA
$ \begin{array}{ll} \mbox{Gate Trigger Voltage (Continuous DC) (Note 5)} & T_C = 25^\circ C \\ \mbox{*}(V_{AK} = 7.0 \mbox{ Vdc}, \mbox{ R}_L = 100 \ \Omega) & T_C = -40^\circ C \end{array} $	V _{GT}		-	0.8 1.2	V
*Gate Non-Trigger Voltage (V_{AK} = Rated V_{DRM} , R_L = 100 Ω) T_C = 110°C	V _{GD}	0.1	_	_	V
	Iн		-	5.0 10	mA
Turn-On Time Delay Time Rise Time $(I_{GT} = 1.0 \text{ mA}, V_D = \text{Rated } V_{DRM},$ Forward Current = 1.0 A, di/dt = 6.0 A/ μ s	t _d t _r		3.0 0.2		μs
Turn-Off Time (Forward Current = 1.0 A pulse, Pulse Width = 50 μ s, 0.1% Duty Cycle, di/dt = 6.0 A/ μ s, dv/dt = 20 V/ μ s, I _{GT} = 1 mA) 2N5060, 2N5061 2N5062, 2N5064	tq	_	10 30	_	μs

Critical Rate of Rise of Off–State Voltage (Rated V_{DRM} , Exponential, R_{GK} = 1 k Ω)	dv/dt	-	30	-	V/µs]
--	-------	---	----	---	------	---

*Indicates JEDEC Registered Data. 3. $R_{GK} = 1000 \Omega$ is included in measurement. 4. Forward current applied for 1 ms maximum duration, duty cycle \leq 1%. 5. R_{GK} current is not included in measurement.

Voltage Current Characteristic of SCR

Symbol	Parameter
V _{DRM}	Peak Repetitive Off State Forward Voltage
I _{DRM}	Peak Forward Blocking Current
V _{RRM}	Peak Repetitive Off State Reverse Voltage
I _{RRM}	Peak Reverse Blocking Current
V _{TM}	Peak on State Voltage
Ι _Η	Holding Current

CURRENT DERATING

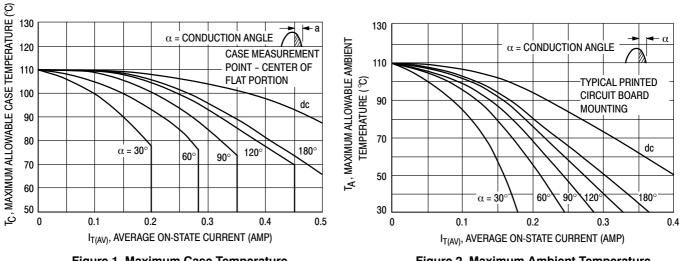
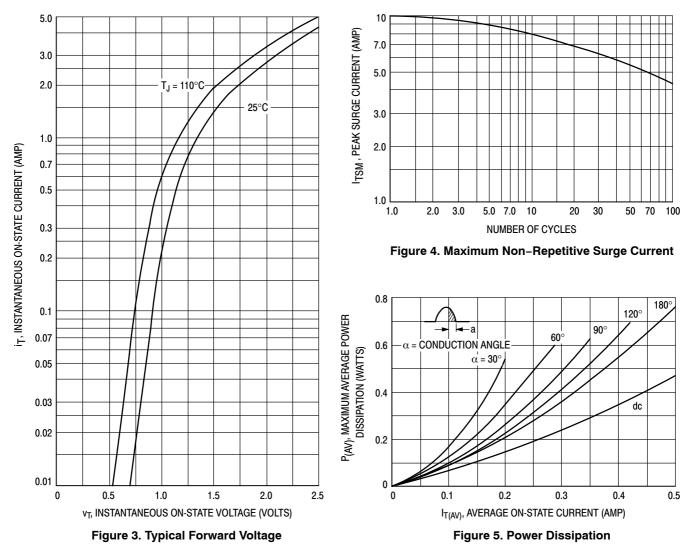
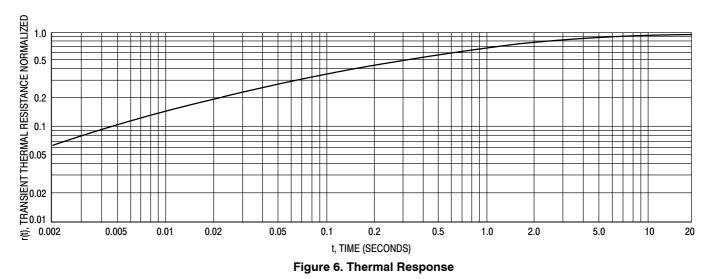
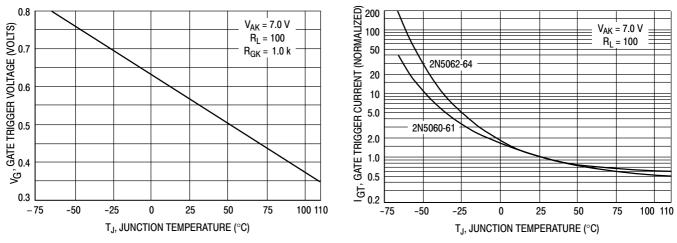
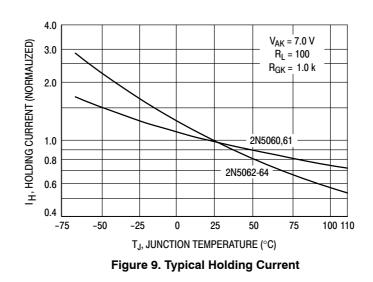
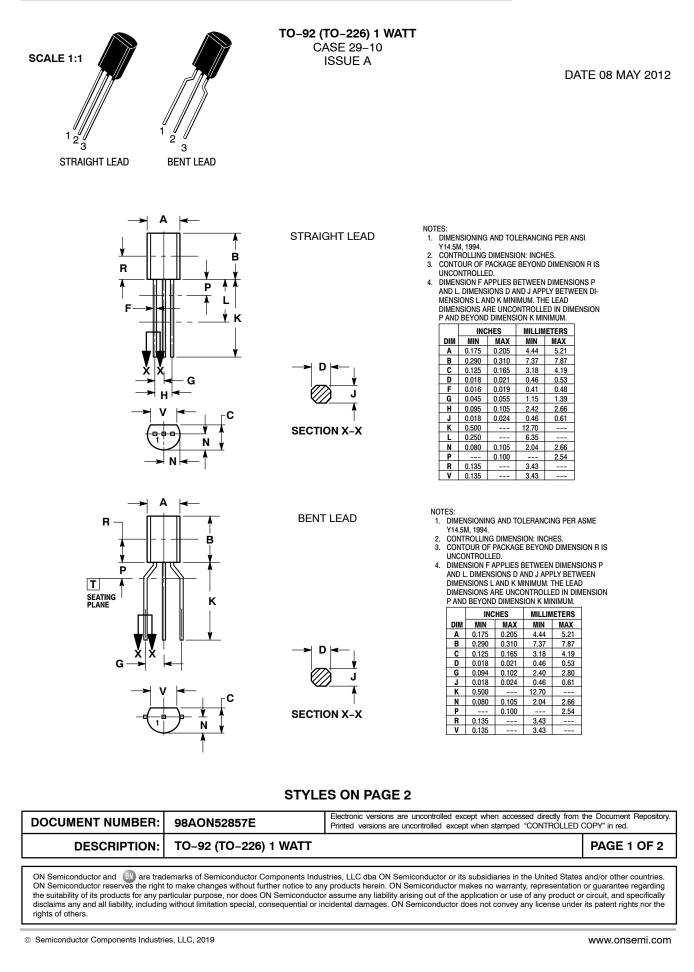




Figure 1. Maximum Case Temperature


Figure 2. Maximum Ambient Temperature

CURRENT DERATING




ORDERING INFORMATION

Device	Package	Shipping [†]
2N5060G	TO-92 (Pb-Free)	5000 Units / Box
2N5060RLRA	TO-92	2000 / Tape & Reel
2N5060RLRAG	TO-92 (Pb-Free)	2000 / Tape & Reel
2N5060RLRMG	TO-92 (Pb-Free)	2000 / Ammo Pack
2N5061G	TO-92 (Pb-Free)	5000 Units / Box
2N5061RLRAG	TO-92 (Pb-Free)	2000 / Tape & Reel
2N5062G	TO-92 (Pb-Free)	5000 Units / Box
2N5062RLRAG	TO-92 (Pb-Free)	2000 / Tape & Reel
2N5064RLRMG	TO-92 (Pb-Free)	2000 / Ammo Pack
2N5064RLRAG	TO-92 (Pb-Free)	2000 / Tape & Reel
2N5064G	TO-92 (Pb-Free)	5000 Units / Box

†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

MECHANICAL CASE OUTLINE PACKAGE DIMENSIONS

TO-92 (TO-226) 1 WATT CASE 29-10 ISSUE A

DATE 08 MAY 2012

	EMITTER BASE COLLECTOR								
	GATE SOURCE & SUBSTRATE DRAIN								
STYLE 11: PIN 1. 2. 3.	ANODE CATHODE & ANODE CATHODE	STYLE 12: PIN 1. 2. 3.	MAIN TERMINAL 1 Gate Main Terminal 2	STYLE 13: PIN 1. 2. 3.	ANODE 1 GATE CATHODE 2	STYLE 14: PIN 1. 2. 3.	EMITTER COLLECTOR BASE	STYLE 15: PIN 1. 2. 3.	ANODE 1 CATHODE ANODE 2
STYLE 16: PIN 1. 2. 3.	ANODE GATE CATHODE	STYLE 17: PIN 1. 2. 3.	COLLECTOR BASE EMITTER	STYLE 18: PIN 1. 2. 3.	ANODE CATHODE NOT CONNECTED	STYLE 19: PIN 1. 2. 3.	GATE ANODE CATHODE	STYLE 20: PIN 1. 2. 3.	NOT CONNECTED CATHODE ANODE
STYLE 21: PIN 1. 2. 3.	COLLECTOR EMITTER BASE	STYLE 22: PIN 1. 2. 3.	SOURCE GATE DRAIN	STYLE 23: PIN 1. 2. 3.	GATE SOURCE DRAIN	STYLE 24: PIN 1. 2. 3.	EMITTER Collector/Anode Cathode	STYLE 25: PIN 1. 2. 3.	MT 1 GATE MT 2
STYLE 26: PIN 1. 2. 3.	V _{CC} GROUND 2 OUTPUT	STYLE 27: PIN 1. 2. 3.	MT SUBSTRATE MT	STYLE 28: PIN 1. 2. 3.	CATHODE ANODE GATE	STYLE 29: PIN 1. 2. 3.	NOT CONNECTED ANODE CATHODE	STYLE 30: PIN 1. 2. 3.	DRAIN GATE SOURCE
STYLE 31: PIN 1. 2. 3.	GATE DRAIN SOURCE	STYLE 32: PIN 1. 2. 3.	BASE COLLECTOR EMITTER	STYLE 33: PIN 1. 2. 3.	RETURN INPUT OUTPUT	STYLE 34: PIN 1. 2. 3.	INPUT Ground Logic	STYLE 35: PIN 1. 2. 3.	GATE COLLECTOR EMITTER

DOCUMENT NUMBER:	98AON52857E	Electronic versions are uncontrolled except when accessed directly from the Document Repository Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.			
DESCRIPTION:	TO-92 (TO-226) 1 WATT		PAGE 2 OF 2		
ON Somiconductor and an are trademarke of Somiconductor Components Inductrics, LLC die ON Somiconductor or its subsidiaries in the United States and/or other sourceires					

ON Semiconductor and us are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor date sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use a a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor houteds for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

TECHNICAL SUPPORT

ON Semiconductor Website: www.onsemi.com

Email Requests to: orderlit@onsemi.com

North American Technical Support: Voice Mail: 1 800–282–9855 Toll Free USA/Canada Phone: 011 421 33 790 2910 Europe, Middle East and Africa Technical Support: Phone: 00421 33 790 2910 For additional information, please contact your local Sales Representative

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

onsemi:

 2N5060
 2N5060RLRA
 2N5060RLRAG
 2N5060RLRM
 2N5060RLRMG
 2N5061
 2N5061G
 2N5061RLRAG

 2N5061RLRAG
 2N5062
 2N5062RLRA
 2N5062RLRAG
 2N5064
 2N5064RLRA
 2N5064RLRAG
 2N